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Minimum Total-Squared-Correlation Quaternary
Signature Sets: New Bounds and Optimal Designs

Ming Li, Student Member, IEEE, Stella N. Batalama, Member, IEEE, Dimitris A. Pados, Member, IEEE,
and John D. Matyjas, Member, IEEE

Abstract—We derive new bounds on the total squared cor-
relation (TSC) of quaternary (quadriphase) signature/sequence
sets for all lengths 𝐿 and set sizes 𝐾. Then, for all 𝐾,𝐿, we
design minimum-TSC optimal sets that meet the new bounds
with equality. Direct numerical comparison with the TSC value
of the recently obtained optimal binary sets shows under what
𝐾,𝐿 realizations gains are materialized by moving from the
binary to the quaternary code-division multiplexing alphabet.
On the other hand, comparison with the Welch TSC value for
real/complex-field sets shows that, arguably, not much is to be
gained by raising the alphabet size above four for any 𝐾,𝐿. The
sum-capacity (as well as the maximum squared correlation and
total asymptotic efficiency) of minimum TSC quaternary sets
is also evaluated in closed-form and contrasted against the sum
capacity of minimum-TSC optimal binary and real/complex sets.

Index Terms—Code-division multiplexing, multiuser commu-
nications, quadriphase symbols, quaternary alphabet, sequences,
sum capacity, Welch bound.

I. INTRODUCTION

WE consider the problem of designing sets of code se-
quences (signatures) for code-division multiplexing ap-

plications from the quaternary alphabet {±1,±𝑗}, 𝑗 ≜
√−1.

A fundamental measure of the cross-correlation properties
of a signature set (and subsequently overall code-division
system performance) is the total squared correlation (TSC). If
𝒮 ≜ {s1, s2, . . . , s𝐾}, s𝑘 ∈ ℂ𝐿, ∥s𝑘∥ = 1, 𝑘 = 1, 2, . . . ,𝐾 ,
is a set of 𝐾 normalized (complex, in general) signatures of
length (processing gain) 𝐿, then the TSC of 𝒮 is the sum of the
squared magnitudes of all inner products between signatures,

TSC(𝒮) ≜
𝐾∑

𝑚=1

𝐾∑
𝑛=1

∣∣s𝐻𝑚s𝑛
∣∣2 where “𝐻” denotes the conjugate

transpose operation. For real/complex-valued signature sets
(𝒮 ∈ ℂ𝐿×𝐾or 𝒮 ∈ ℝ𝐿×𝐾), TSC is bounded from below
by [1]-[3]

TSC(𝒮) ≥ 𝐾𝑀

𝐿
(1)
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where 𝑀 = max{𝐾,𝐿}. The bound in (1) is called the
“Welch bound” and the signature sets that satisfy (1) with
equality are called Welch-bound-equality (WBE) sets. While
for real/complex-valued signature sets the Welch bound is
always achievable [4]-[12], this is not the case in general
for finite-alphabet signatures. Recently, new bounds were
derived for the TSC of binary (alphabet {±1}) signature
sets for all lengths 𝐿 and set sizes 𝐾 together with optimal
set designs for (almost) all 𝐾 and 𝐿 [13]-[15]. The sum
capacity, total asymptotic efficiency, and maximum squared
correlation of minimum-TSC optimal sets were found in
[16]-[17]. Minimum-TSC and other digital sequence sets are
studied and utilized in [18]-[21].

The gap in TSC between minimum-TSC binary signature
sets and Welch-bound-equality real/complex sets can be re-
duced if we utilize alphabets of larger size. Certainly there
is a tradeoff between system performance and transceiver
complexity that is associated with our selection of the alphabet
size. The quaternary (or quadriphase or 4-phase) alphabet
appears as a good candidate since system complexity increase,
which is attributed primarily to the addition of a quadrature
signal/carrier into the system, may be negligible. Most code-
division multiplexing (CDM) systems already employ quadra-
ture signaling, thus utilizing quaternary signature sets would
not incur significant additional cost over binary signature sets.

In this paper, we consider a quaternary alphabet and in-
vestigate under what 𝐾 , 𝐿 realizations gains can be mate-
rialized by moving from the binary to the quaternary code-
division multiplexing alphabet. In particular, we first derive
new bounds on the TSC of any quaternary signature matrix
𝒮 = [s1, s2, . . . , s𝐾 ] ∈ 1√

𝐿
{±1,±𝑗}𝐿×𝐾 for all possible

𝐾 and 𝐿 values. Then, via quaternary Hadamard matrix
transformations, we design minimum-TSC optimal quaternary
signature sets that achieve the new bounds. Finally, we derive
analytic expressions for the maximum squared correlation
(MSC), total asymptotic efficiency (TAE), and sum capacity
𝐶sum of the minimum-TSC quaternary sets. In particular, we
show that minimum-TSC quaternary sets exhibit the following
properties: (i) if 𝐾 ≤ 𝐿, MSC(𝒮) is also minimum; (ii)
if 𝐾 ≤ 𝐿, TAE(𝒮) is single-valued when 𝐿 ≡ 0(mod
2) and multi-valued when 𝐿 ≡ 1(mod2); (iii) 𝐶sum(𝒮)
is single-valued when max{𝐿,𝐾} ≡ 0(mod2) and multi-
valued when max{𝐿,𝐾} ≡ 1(mod 2). We derive the exact
value of MSC, TAE, and 𝐶sum when these metrics are single-
valued. When TAE and/or 𝐶sum are multi-valued, we establish
lower and upper bounds and prove their tightness; the exact
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value of 𝐶sum and/or TAE depends on the particular design of
the minimum-TSC signature set. A direct conclusion from this
study is that minimum-TSC optimal quaternary sets are not
necessarily 𝐶sum and/or TAE-optimal, which is also the case
for binary antipodal signature sets [16] (we recall that all three
metrics are equivalent for real/complex-valued sets [2], [7],
[19], [22], [24]). We show, however, that a proposed design
of minimum-TSC quaternary signature sets can also minimize
MSC, maximize TAE, and maximize 𝐶sum, simultaneously.

The rest of the paper is organized as follows. In Section II
we present the new bounds and optimal designs. In Sections
III, IV, and V we evaluate the maximum squared correlation,
total asymptotic efficiency, and sum capacity, respectively, of
minimum-TSC quaternary sets. A few conclusions are drawn
in Section VI.

II. NEW BOUNDS ON THE TSC OF QUATERNARY

SIGNATURE SETS AND OPTIMAL DESIGNS

We recall that the Karystinos-Pados bounds on the TSC of a
binary signature set can be given compactly by the following
expression [13]-[15]

TSC(𝒮𝐵) ≥ 𝐾𝑀

𝐿
+

⎧⎨
⎩

0, 𝑀 ≡ 0(mod 4)
𝑚(𝑚−1)

𝐿2 , 𝑀 ≡ 1(mod 2)
4
𝐿2 [⌊𝑚

2
⌋2 + ⌈𝑚

2
⌉2 −𝑚], 𝑀 ≡ 2(mod 4)

(2)

where 𝐾 is the number of signatures, 𝐿 is the signature length,
𝑀 = max {𝐾,𝐿}, and 𝑚 = min {𝐾,𝐿}. The subscript “𝐵”
in 𝒮𝐵 identifies a binary signature set 𝒮𝐵 ∈ 1√

𝐿
{±1}𝐿×𝐾 ,

and ⌊𝑥⌋, ⌈𝑥⌉ stand for the closest to 𝑥 integer that is less than
or equal to 𝑥 and greater than or equal to 𝑥, respectively.

In this paper, we consider quaternary signature sets
𝒮𝑄 ≜ [s1, s2, . . . , s𝐾 ] ∈ 1√

𝐿
{±1,±𝑗}𝐿×𝐾 , 𝑗 ≜

√−1,
where the subscript “𝑄” in 𝒮𝑄 stands for quaternary. Since
binary signature sets are special cases of quaternary signature
sets ({±1} ⊂ {±1,±𝑗}), for any 𝐾 and 𝐿 any achievable
lower bound on the TSC of 𝒮𝑄 lies between the Welch bound
and the Karystinos-Pados bound. Thus, using (2), whenever
𝑀 ≡ 0(mod 4) the bound on TSC of any set 𝒮𝑄 is

TSC(𝒮𝑄) ≥
{

𝐾, 𝐾 ≤ 𝐿 and 𝐿 ≡ 0(mod 4),
𝐾2/𝐿, 𝐾 > 𝐿 and 𝐾 ≡ 0(mod 4). (3)

In the rest of this section, we derive new bounds on the
TSC of quaternary signature sets for all possible combi-
nations of the values of 𝐾 and 𝐿 when 𝑀 ≡ 1(mod2)
and 𝑀 ≡ 2(mod 4). Then, via quaternary Hadamard matrix
transformations, we design optimal quaternary signature sets
that achieve the new bounds.

A. Underloaded system (𝐾 ≤ 𝐿)

Theorem 1 below provides new lower bounds on the TSC
of any signature set 𝒮𝑄 when 𝐾 ≤ 𝐿 (underloaded systems)
and max{𝐾,𝐿} = 𝐿 is not a multiple of 4.

Theorem 1: Let 𝒮𝑄 be an arbitrary quaternary signature set
𝒮𝑄 ≜ [s1, s2, . . . , s𝐾 ] ∈ 1√

𝐿
{±1,±𝑗}𝐿×𝐾 , 𝑗 =

√−1, 𝐾 ≤
𝐿. Then,

TSC(𝒮𝑄) ≥
{

𝐾 + 𝐾(𝐾−1)
𝐿2 , 𝐿 ≡ 1(mod 2)

𝐾, 𝐿 ≡ 0(mod 2). (4)

Proof : The TSC of 𝒮𝑄 can be expressed as

TSC(𝒮𝑄) = 𝐾 +

𝐾∑
𝑚=1

𝐾∑
𝑛=1,
𝑚∕=𝑛

∣∣s𝐻𝑚s𝑛
∣∣2 (5)

where the double-summation term is the TSC between differ-
ent signatures in 𝒮𝑄 (if this term has zero value, i.e. all pairs
of signatures have zero cross-correlation, the lower bound of
TSC(𝒮𝑄) reduces to the Welch bound). To obtain a lower
bound on the double-summation term in (5), we consider the
set 𝒞 of all non-ordered pairs of signatures {s𝑚, s𝑛}, 𝑚 ∕= 𝑛,
with non-zero cross correlation, i.e. 𝒞 ({s1, s2, . . . , s𝐾}) ≜
{{s𝑚, s𝑛} such that 𝑚 ∕= 𝑛 and s𝐻𝑚s𝑛 ∕= 0, 𝑚 = 1, 2, . . . ,𝐾 ,
𝑛 = 1, 2, . . . ,𝐾}. Then,

TSC(𝒮𝑄) ≥ 𝐾 + 2 ∣𝒞(𝒮𝑄)∣ ∣𝐴∣2 (6)

where 𝐴 is a lower bound on the cross-correlation of any two
signatures in 𝒮𝑄 (i.e., ∣s𝐻𝑚s𝑛∣ ≥ 𝐴 ∀ s𝑚, s𝑛 ∈ 𝒮𝑄) and ∣𝒞(⋅)∣
denotes the cardinality of the set 𝒞(⋅). Since the quaternary
signature alphabet 1√

𝐿
{±1,±𝑗} is closed under multiplication

and conjugation (denoted by “*”), signature cross-correlations
can be expressed as

s𝐻𝑚s𝑛 ≜
𝐿∑

𝑖=1

𝑠∗𝑚𝑖𝑠𝑛𝑖 = 𝑎

(
+1

𝐿

)
+ 𝑏

(−1

𝐿

)
+ 𝑐

(
+𝑗

𝐿

)
+ 𝑑

(−𝑗

𝐿

)

(7)

for some integers 𝑎, 𝑏, 𝑐, 𝑑 such that 𝑎 + 𝑏 + 𝑐 + 𝑑 = 𝐿.
Then,

∣∣s𝐻𝑚s𝑛
∣∣ = 1

𝐿

√
(𝑎− 𝑏)2 + (𝑐− 𝑑)2. If 𝐿 ≡ 1(mod 2),

𝑎 + 𝑏 + 𝑐 + 𝑑 ≡ 1(mod 2) which implies that (𝑎 − 𝑏)2 +
(𝑐− 𝑑)2 ≡ 1(mod 2) and since (𝑎− 𝑏)2 + (𝑐 − 𝑑)2 ⩾ 0, we
have (𝑎 − 𝑏)2 + (𝑐 − 𝑑)2 ⩾ 1. Thus,

∣∣s𝐻𝑚s𝑛
∣∣ ≥ 1

𝐿 for any
s𝑚, s𝑛 ∈ 𝒮𝑄. We conclude that if 𝐿 ≡ 1(mod 2) then the
cross-correlation value between any two signatures in 𝒮𝑄 is
non-zero (∣𝐴∣ = 1

𝐿 ), therefore ∣𝒞(𝒮𝑄)∣ =
(
𝐾
2

)
= 𝐾(𝐾−1)/2.

On the other hand, if 𝐿 ≡ 0(mod 2) there may be signature
pairs in 𝒮𝑄 that exhibit zero cross-correlation. ■

The new bounds on the TSC of quaternary signature sets
for underloaded systems (𝐾 ≤ 𝐿) are summarized in Table I.
Table I can also be viewed as proof that when the signature
length is not even, no orthogonal quaternary signature set
exists.

B. Overloaded system (𝐾 > 𝐿)

Let d𝑙 = [s1(𝑙), s2(𝑙), ⋅ ⋅ ⋅ , s𝐾(𝑙)]𝑇 ∈ 1√
𝐿
{±1,±𝑗}𝐾

denote the transpose of the 𝑙th row, 𝑙 = 1, 2, . . . , 𝐿, of the sig-
nature matrix 𝒮𝑄. Due to the “row-column equivalence” [18],

TSC(𝒮𝑄) =
𝐾∑

𝑚=1

𝐾∑
𝑛=1

∣∣s𝐻𝑚s𝑛
∣∣2 = 𝐿∑

𝑙=1

𝐿∑
𝑟=1

∣∣d𝐻
𝑙 d𝑟

∣∣2. Therefore,

we can proceed with the calculation of TSC(𝒮𝑄) as follows

TSC(𝒮𝑄) =
𝐿∑

𝑙=1

∣∣∣d𝐻
𝑙 d𝑙

∣∣∣2 +
𝐿∑

𝑙=1

𝐿∑
𝑟=1,𝑟 ∕=𝑙

∣∣∣d𝐻
𝑙 d𝑟

∣∣∣2

=
𝐾2

𝐿
+

𝐿∑
𝑙=1

𝐿∑
𝑟=1,𝑟 ∕=𝑙

∣∣∣d𝐻
𝑙 d𝑟

∣∣∣2

=
𝐾2

𝐿
+ 2 ∣𝐶 ({d1, d2, ⋅ ⋅ ⋅ ,d𝐿})∣

∣∣∣d𝐻
𝑙 d𝑟

∣∣∣2 . (8)
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TABLE I
UNDERLOADED QUATERNARY SEQUENCE SETS (𝐾 ≤ 𝐿)

Length Number of Sequences Lower Bound on TSC

𝐿 ≡ 0(mod 2) Any 𝐾 𝐾

𝐿 ≡ 1(mod 2) Any 𝐾 𝐾 +
𝐾(𝐾−1)

𝐿2

TABLE II
OVERLOADED QUATERNARY SEQUENCE SETS (𝐾 ≥ 𝐿)

Number of Sequences Length Lower Bound on TSC

𝐾 ≡ 0(mod 2) Any 𝐿 𝐾2

𝐿

𝐾 ≡ 1(mod 2) Any 𝐿 𝐾2

𝐿
+ 𝐿−1

𝐿

By Theorem 1, we obtain that

TSC(𝒮𝑄) ≥
{

𝐾2

𝐿 , 𝐾 ≡ 0(mod 2)
𝐾2

𝐿 + 𝐿−1
𝐿 , 𝐾 ≡ 1(mod 2). (9)

The new bounds on the TSC of quaternary signature sets for
overloaded (𝐾 > 𝐿) systems are summarized in Table II.

We observe that when 𝑀 ≜ max{𝐾,𝐿} is 0(mod 4) or
1(mod 2) (multiple of four or odd) the TSC lower bounds
for quaternary signature sets in Tables I and II are identical
to the tight binary Karystinos-Pados (KP) bounds [13], while
for 𝑀 ≡ 2(mod 4), the lower bounds of TSC (𝒮𝑄) in Table
I and Table II are less than the corresponding KP bounds for
binary signature sets. We also recall that 𝐾 = 𝐿 ≡ 1( mod 4)
is an open standing problem (the only one) [13]-[15] in
optimal binary signature set design and KP-bound-equality
sets may in fact exist only for values 𝐾 = 𝐿 = 2𝑥(𝑥+1)+1,
𝑥 = 1, 2, . . . (i.e. 𝐾 = 𝐿 = 5, 13, 25, 41, 61, . . .). We conclude
that we can benefit in TSC by moving from the binary to
the quaternary alphabet if max{𝐾,𝐿}/2 is an odd integer or
𝐾 = 𝐿 ∕= 2𝑥(𝑥 + 1) + 1, 𝑥 = 1, 2, . . .. Particularly, when
max{𝐾,𝐿}/2 is odd, the reduction in TSC is approximately
4𝑚(𝑚−1)

𝐿2 , 𝑚 = min{𝐾,𝐿}. Moreover, for any 𝐾 and 𝐿, half
of the minimum-TSC quaternary sets reach the Welch bound
while only a quarter of the minimum-TSC binary sets do. To
illustrate the potential reduction in TSC by quaternary designs,
in Fig. 1 we consider systems with four different signature
lengths 𝐿 = 34, 46, 54, 66 and plot TSC(𝒮) −𝐾 (i.e. total
squared cross-correlation) for both binary and quaternary sets
as a function of the number of signatures 𝐾 . To materialize
the potential TSC/multiplexing improvements we need designs
that meet the corresponding new quaternary bounds in Tables
I and II with equality as described in the following subsection.

C. Design of Minimum TSC Quaternary Signature Sets

Our designs of optimal quaternary signature sets are based
on transformations of quaternary Hadamard matrices as in
[13].
Definition 1: (Quaternary Hadamard matrix)
Let H𝑄 be an 𝑁 -order square matrix over the quaternary
alphabet, i.e. H𝑄 ∈ {±1,±𝑗}𝑁×𝑁 , 𝑗 ≜

√−1, 𝑁 > 0. H𝑄 is
a quaternary Hadamard matrix if H𝑄H

𝐻
𝑄 = 𝑁I𝑁 where I𝑁

is the 𝑁 ×𝑁 identity matrix. ■
Tables I and II indicate that when 𝑀 = max{𝐾,𝐿} is even,

the lower bound on the TSC of quaternary signature sets is
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Fig. 1. Total squared cross-correlation versus number of signatures 𝐾: (a)
𝐿 = 34, (b) 𝐿 = 46, (c) 𝐿 = 54, and (d) 𝐿 = 66.

equal to the real/complex Welch bound and can be achieved
by any set 𝒮𝑄 that has orthogonal rows when 𝐾 ≥ 𝐿 or
orthogonal columns when 𝐾 ≤ 𝐿. If 𝑀 is not even, our lower
bounds on the TSC of quaternary signature sets in (4), (9) are
strictly larger than the Welch bound which implies that there
is no quaternary matrix 𝒮𝑄 that has orthogonal rows when
𝐾 ≥ 𝐿 or orthogonal columns when 𝐾 ≤ 𝐿. In other words,
a necessary condition for a quaternary Hadamard matrix to
exist is that its size is even1; equivalently, if 𝑀 is not even,
then quaternary Hadamard matrices do not exist.

As is the case for binary Hadamard matrices, there is no
universal procedure to generate quaternary Hadamard matrices
for all even orders. Binary Hadamard matrices can be con-
sidered as a special case of quaternary Hadamard matrices.
The generation of binary Hadamard matrices of orders that
are multiples of four has been well studied. To generate a
quaternary Hadamard matrix with order that is a multiple
of four, we may multiple by ±𝑗 any column or row of a
binary Hadamard matrix of the same order. Unfortunately, it
is not easy to generate a quaternary Hadamard matrix of even
order 𝑁 that is not a multiple of four. Below, we propose
two alternative methods for this task. First, we suggest a
modified version of the analytical procedure of Diţǎ [25]-
[27] that generates (𝑁 − 2)2 polynomial equations. Our
modification incorporates constraints that restrict the phase
of the matrix elements to be in the set {0, 𝜋/2, 𝜋, 3𝜋/2}.
Then, the solutions of the constrained system of (𝑁 − 2)2
polynomial equations can be used as the entries of a quaternary
Hadamard matrix. We note that solving such a constrained
system of (𝑁 − 2)2 polynomial equations is, in general, a
computationally complex process and no specific algorithm is
available in the literature for this task.

On the other hand, exhaustive search may be thought of as
a method to return all quaternary Hadamard matrices of order
𝑁 . We understand, however, that the complexity of exhaustive
search (which is equal to 4𝑁

2

) is prohibitively high2 even for

1A necessary condition for a binary Hadamard matrix to exist is that its
size is a multiple of four, except for the trivial cases of size one or two.

2The complexity may be less if only one quaternary Hadamard matrix needs
to be found.
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TABLE III
EXAMPLES OF A1 , A2 CIRCULANT MATRICES

First row of A1 First row of A2

𝑁
2
= 3 [𝑗 1 1] [−1 1 1]

𝑁
2
= 5 [1 𝑗 −1 −1 𝑗] [1 −1 𝑗 𝑗 −1]

𝑁
2
= 7 [1 1 1 −1 −1 1 1] [1 𝑗 −𝑗 𝑗 𝑗 −𝑗 𝑗]

𝑁
2
= 9 [1 −1 1 1 −1 1 −1−1 −1] [1 1 1 𝑗 1 1 1 −1 −1]

𝑁
2
= 11 [1 −1 −1 𝑗 𝑗 1 1 𝑗 𝑗 −1 −1] [𝑗 1 −1 −𝑗 𝑗 −1 −1 𝑗 −𝑗 −1 1]

𝑁
2
= 13 [1 1 −1 𝑗 𝑗 −1 −1 −1 −1 𝑗 𝑗 −1 1] [𝑗 1 −1 𝑗 𝑗 −1 −1 −1 −1 𝑗 𝑗 −1 1]

𝑁
2
= 15 [1 1 −1 𝑗 −𝑗 1 −1 −𝑗 −𝑗 −1 1 −𝑗 𝑗 −1 1] [𝑗 1 1 𝑗 𝑗 −1 1 −𝑗 −𝑗 1 −1 𝑗 𝑗 1 1]

𝑁
2
= 17 [1 −1 −1 𝑗 −𝑗 1 1 𝑗 𝑗 𝑗 𝑗 1 1 −𝑗 𝑗 −1 −1] [𝑗 1 −1 𝑗 −𝑗 −1 −1 𝑗−𝑗 −𝑗 𝑗 −1 −1 −𝑗 𝑗 −1 1]

moderate values of 𝑁 . The second method that we suggest
herein has significantly less computational complexity (equal
to 4𝑁 ) than exhaustive search. Our method is based on the
following lemma [28], [29].

Lemma 1: If A1, A2 are two circulant matrices such that
A1, A2 ∈ {±1,±𝑗}𝑁

2 ×𝑁
2 , 𝑁

2 ∈ ℕ, and A1, A2 satisfy

A1A
𝐻
1 +A2A

𝐻
2 = 𝑁I𝑁

2
(10)

where I𝑁
2

is an 𝑁
2 × 𝑁

2 identity matrix, then the construction

H𝑄 =

[
A1 A2

A𝐻
2 −A𝐻

1

]
is an 𝑁 -order quaternary Hadamard

matrix. ■
As an example, if A1 =

[
𝑗 1 1
1 𝑗 1
1 1 𝑗

]

and A2 =

[ −1 1 1
1 −1 1
1 1 −1

]
, then H𝑄 =⎡

⎣ 𝑗 1 1 −1 1 1
1 𝑗 1 1 −1 1
1 1 𝑗 1 1 −1

−1 1 1 𝑗 −1 −1
1 −1 1 −1 𝑗 −1
1 1 −1 −1 −1 𝑗

⎤
⎦ is a quaternary Hadamard

matrix. There are only 4
𝑁
2 distinct 𝑁

2 × 𝑁
2 circulant matrices

over the quaternary alphabet and each of them can be
identified by its first row only. If two 𝑁

2 × 𝑁
2 circulant

matrices A1 and A2 that satisfy (10) exist, they can be found
by examining all 4𝑁 possible pairs of circulant matrices.
Then, a quaternary Haramard matrix with order 𝑁 can be
generated by A1 and A2 as given by Lemma 1. Examples of
the first rows of A1 and A2-type matrices for different values
of 𝑁 are given in Table III. Additional quaternary Hadamard
matrices generated by this method can be found in [30].

In the rest of this section we present a sufficient condition
under which the new TSC lower bounds of Tables I and
II become tight. Then, we outline a design procedure of
quaternary signature sets that achieve the bounds.

Proposition 1: Set 𝑁 ≜ 2 ⌈max {𝐾,𝐿}/2⌉ and 𝑃 ≜
2 ⌊max {𝐾,𝐿}/2⌋. If there exists a quaternary Hadamard ma-
trix of size 𝑁 , then for any 𝐾 and 𝐿 there exists a quaternary
signature matrix 𝒮𝑄 = [s1, s2, . . . , s𝐾 ] ∈ 1√

𝐿
{±1,±𝑗}𝐿×𝐾

that achieves the TSC lower bound in Table I or II. If there
exists a quaternary Hadamard matrix of size 𝑃 , then there
exists a quaternary signature matrix 𝒮𝑄 = [s1, s2, . . . , s𝐾 ] ∈
1√
𝐿
{±1,±𝑗}𝐿×𝐾 with 𝐾 ∕= 𝐿 that achieves the TSC lower

bound in Table I or II. ■
For underloaded systems, 𝐾 ≤ 𝐿, let 𝑁 = 2 ⌈𝐿/2⌉ and

generate an 𝑁 -order quaternary Hadamard matrix H𝑄. Either
𝐿 = 𝑁 or 𝐿 = 𝑁 − 1. If 𝐿 = 𝑁 , then a quaternary set 𝒮𝑄

can be formed by selecting and normalizing by 1√
𝐿

any 𝐾
columns of H𝑄; if 𝐿 = 𝑁 − 1, then we first truncate H𝑄 by
one row and then form 𝒮𝑄 by selecting and normalizing by
1√
𝐿

any 𝐾 columns from the truncated matrix. For overloaded
systems, 𝐾 ≥ 𝐿, let 𝑁 = 2 ⌈𝐾/2⌉ and generate an 𝑁 -order
quaternary Hadamard matrix H𝑄. Then, 𝐾 = 𝑁 or 𝐾 =
𝑁 − 1. If 𝐾 = 𝑁 , we may choose any 𝐿 rows of H𝑄 and
normalize them by 1√

𝐿
; this is our 𝒮𝑄. If 𝐾 = 𝑁 − 1, we

may proceed by truncating H𝑄 by one column and then form
𝒮𝑄 by choosing and normalizing by 1√

𝐿
any 𝐿 rows of the

truncated matrix.
By Proposition 1, a minimum-TSC quaternary signature set

can also be designed based on a 𝑃 = 2 ⌊max {𝐾,𝐿}/2⌋
order quaternary Hadamard matrix if it exists. Since 𝑃 =
𝑁 when max{𝐾,𝐿} ≡ 0(mod2), we focus on the case
max{𝐾,𝐿} ≡ 1(mod2) and 𝐾 ∕= 𝐿. For underloaded
systems, 𝐾 < 𝐿, 𝐿 ≡ 1(mod 2), and 𝑃 = 2 ⌊𝐿/2⌋ = 𝐿− 1.
Generate an (𝐿− 1)-order quaternary Hadamard matrix H𝑄.
To form 𝒮𝑄, we first select any 𝐾 columns of H𝑄, then
insert an arbitrary row vector v𝑇

1 ∈ {±1,±𝑗}1×𝐾 , and
finally normalize all columns by 1√

𝐿
. For overloaded systems,

𝐾 > 𝐿, 𝐾 ≡ 1(mod2), and 𝑃 = 2 ⌊𝐾/2⌋ = 𝐾 − 1.
Generate a (𝐾 − 1)-order quaternary Hadamard matrix H𝑄.
To form 𝒮𝑄 we may proceed by choosing any 𝐿 rows of H𝑄,
inserting an arbitrary column vector v2 ∈ {±1,±𝑗}𝐿×1, and
finally normalizing all rows by 1√

𝐿
.

Fig. 2 summarizes the quaternary signature set design
procedure described above in the form of a flow chart subject
to the existence of a quaternary Hadamard matrix of order
𝑁 = 2 ⌈max{𝐿,𝐾}/2⌉ or 𝑃 = 2 ⌊max{𝐿,𝐾}/2⌋. We can
show that the TSC of sets 𝒮𝑄 designed by this procedure is
exactly equal to the corresponding new bounds in Tables I or
II and thus the produced quaternary signature sets are TSC-
optimal.

As an illustrative example, in Fig. 3 we give a TSC-
optimal quaternary signature set for an overloaded system with
signature length 𝐿 = 13 and 𝐾 = 22 signatures. Another
example of optimal design with 𝐿 = 𝐾 = 9 is shown in Fig.
4. These optimal sets were obtained directly by the design
procedure of Fig. 2.

III. MAXIMUM SQUARED CORRELATION (MSC) OF

MINIMUM-TSC QUATERNARY SIGNATURE SETS

Let 𝒮𝑄 = [s1, s2, . . . , s𝐾 ]𝐿×𝐾 be an underloaded, 𝐾 ≤ 𝐿,
signature matrix with quaternary normalized signatures s𝑘 ∈
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Fig. 2. Optimal quaternary signature set design procedure.

𝒮𝑄 =
1√
13

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+1 +1 +𝑗 −1 +1 −𝑗 −𝑗 +1 −1 +𝑗 +1 +𝑗 +1 −𝑗 +1 −1 −𝑗 −𝑗 −1 +1 −𝑗 +1

+1 +1 +1 +𝑗 −1 +1 −𝑗 −𝑗 +1 −1 +𝑗 +1 +𝑗 +1 −𝑗 +1 −1 −𝑗 −𝑗 −1 +1 −𝑗

+𝑗 +1 +1 +1 +𝑗 −1 +1 −𝑗 −𝑗 +1 −1 −𝑗 +1 +𝑗 +1 −𝑗 +1 −1 −𝑗 −𝑗 −1 +1

−1 +𝑗 +1 +1 +1 +𝑗 −1 +1 −𝑗 −𝑗 +1 +1 −𝑗 +1 +𝑗 +1 −𝑗 +1 −1 −𝑗 −𝑗 −1

+1 −1 +𝑗 +1 +1 +1 +𝑗 −1 +1 −𝑗 −𝑗 −1 +1 −𝑗 +1 +𝑗 +1 −𝑗 +1 −1 −𝑗 −𝑗

−𝑗 +1 −1 +𝑗 +1 +1 +1 +𝑗 −1 +1 −𝑗 −𝑗 −1 +1 −𝑗 +1 +𝑗 +1 −𝑗 +1 −1 −𝑗

−𝑗 −𝑗 +1 −1 +𝑗 +1 +1 +1 +𝑗 −1 +1 −𝑗 −𝑗 −1 +1 −𝑗 +1 +𝑗 +1 −𝑗 +1 −1

+1 −𝑗 −𝑗 +1 −1 +𝑗 +1 +1 +1 +𝑗 −1 −1 −𝑗 −𝑗 −1 +1 −𝑗 +1 +𝑗 +1 −𝑗 +1

−1 +1 −𝑗 −𝑗 +1 −1 +𝑗 +1 +1 +1 +𝑗 +1 −1 −𝑗 −𝑗 −1 +1 −𝑗 +1 +𝑗 +1 −𝑗

+𝑗 −1 +1 −𝑗 −𝑗 +1 −1 +𝑗 +1 +1 +1 −𝑗 +1 −1 −𝑗 −𝑗 −1 +1 −𝑗 +1 +𝑗 +1

+1 +𝑗 −1 +1 −𝑗 −𝑗 +1 −1 +𝑗 +1 +1 +1 −𝑗 +1 −1 −𝑗 −𝑗 −1 +1 −𝑗 +1 +𝑗

−𝑗 +1 +𝑗 +1 −1 +𝑗 +𝑗 −1 +1 +𝑗 +1 −1 −1 +𝑗 +1 −1 −𝑗 −𝑗 −1 +1 +𝑗 −1

+1 −𝑗 +1 +𝑗 +1 −1 +𝑗 +𝑗 −1 +1 +𝑗 −1 −1 −1 +𝑗 +1 −1 −𝑗 −𝑗 −1 +1 +𝑗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 3. Optimal quaternary signature set for overloaded multiplexing with signature length 𝐿 = 13 and 𝐾 = 22 signatures.

1√
𝐿
{±1,±𝑗}𝐿, 𝑘 = 1, 2, . . . ,𝐾 . We recall that the maximum

squared correlation (MSC) of a signature set is the maximum
squared magnitude among all inner products between distinct
signatures. By the proof of Theorem 1 in Section II, we can
obtain that the maximum squared correlation of 𝒮𝑄, denoted
by MSC(𝒮𝑄), is lower-bounded as follows:

MSC(𝒮𝑄) = max
𝑚 ∕=𝑛

∣∣s𝐻𝑚s𝑛
∣∣2 ≥

{
0, 𝐿 ≡ 0(mod 2)
1
𝐿2 , 𝐿 ≡ 1(mod 2).

(11)
The following two Propositions summarize our findings

about the MSC of underloaded minimum-TSC quaternary

signature sets. The proof is obtained directly from the material
in Section II and is, therefore, omitted.

Proposition 2: Let 𝒮𝑄 ∈ 1√
𝐿
{±1,±𝑗}𝐿×𝐾 , 1 < 𝐾 ≤ 𝐿,

be a quaternary signature matrix that achieves the correspond-
ing TSC lower bound in Table I. Then,
(i) MSC(𝒮𝑄) = 0, if 𝐿 ≡ 0(mod 2);
(ii) MSC(𝒮𝑄) =

1
𝐿2 , if 𝐿 ≡ 1(mod 2). ■

Proposition 3: An underloaded quaternary signature set
achieves the lower bound on TSC in Table I if and only if
it achieves the lower bound on MSC in (11). ■

We conclude that the MSC of minimum-TSC quaternary
underloaded sets is less than the MSC of minimum-TSC
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𝒮𝑄 =
1

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+1 +𝑗 −1 −1 +𝑗 +1 −1 +𝑗 +𝑗

+𝑗 +1 +𝑗 −1 −1 −1 +1 −1 +𝑗

−1 +𝑗 +1 +𝑗 −1 +𝑗 −1 +1 −1

−1 −1 +𝑗 +1 +𝑗 +𝑗 +𝑗 −1 +1

+𝑗 −1 −1 +𝑗 +1 −1 +𝑗 +𝑗 −1

+1 −1 −𝑗 −𝑗 −1 −1 +𝑗 +1 +1

−1 +1 −1 −𝑗 −𝑗 +𝑗 −1 +𝑗 +1

−𝑗 −1 +1 −1 −𝑗 +1 +𝑗 −1 +𝑗

−𝑗 −𝑗 −1 +1 −1 +1 +1 +𝑗 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 4. Optimal quaternary signature set with signature length 𝐿 = 9 and
𝐾 = 9 signatures.

binary set by 4
𝐿2 when 𝐿 ≡ 2(mod4) and 𝐾 > 2. Most

importantly, for all 𝐾 , 𝐿 with 𝐾 ≤ 𝐿, the minimum-TSC
quaternary signature sets obtained in Section II are doubly
optimal (subject to the existence of a quaternary Hadamard
matrix of size 2⌈𝐿/2⌉). They exhibit minimum both TSC and
MSC at the same time. Therefore, when we design quaternary
signature sets (Fig. 2) we can focus on minimizing TSC only
and can rest assured that MSC will also be minimized. It is
interesting to note that the equivalence between TSC and MSC
optimization is not true, in general, for binary sets3 [16].

IV. TOTAL ASYMPTOTIC EFFICIENCY (TAE) OF

MINIMUM-TSC QUATERNARY SIGNATURE SETS

The TAE of a complex-valued signature matrix 𝒮 =
[s1, . . . , s𝐾 ], s𝑘 ∈ ℂ𝐿, ∥s𝑘∥ = 1, 𝑘 = 1, 2, . . . ,𝐾 , is equal
to the determinant of the signature cross-correlation matrix,
TAE(𝒮) ≜ ∣∣𝒮𝐻𝒮∣∣ and 0 ≤ TAE(𝒮) ≤ 1. Since 𝒮𝐻𝒮 is rank-
deficient and TAE(𝒮) = 0 when 𝐾 > 𝐿 (overloaded system),
we only consider the underloaded case. TAE(𝒮) achieves the
unit upper bound if 𝒮 has orthogonal columns. However, it has
been an open question whether tightness is maintained when 𝒮
is quaternary, that is s𝑘 ∈ 1√

𝐿
{±1,±𝑗}𝐿, 𝑘 = 1, 2, . . . ,𝐾 . In

this section, we obtain closed form expressions for the TAE
of minimum-TSC quaternary signature sets for all 𝐾 ≤ 𝐿.
Our developments are based on the proposition that we state
below and prove in the Appendix.

Proposition 4: Let 𝒮𝑄 ∈ 1√
𝐿
{±1,±𝑗}𝐿×𝐾 , 𝐾 ≤ 𝐿, be

a quaternary signature matrix that achieves the correspond-
ing TSC lower bound in Table I and [𝒮𝐻

𝑄 𝒮𝑄]𝑚𝑛 denotes
the (𝑚,𝑛)th element of 𝒮𝐻

𝑄 𝒮𝑄, 𝑚 = 1, 2, . . . ,𝐾 , 𝑛 =

1, 2, . . . ,𝐾 . Then, 𝒮𝐻
𝑄 𝒮𝑄 has following properties:

(i) If 𝐿 ≡ 0(mod 2), 𝒮𝐻
𝑄 𝒮𝑄 = I𝐾 ;

(ii) if 𝐿 ≡ 1(mod2), then [𝒮𝐻
𝑄 𝒮𝑄]𝑚𝑚 = 1 and

[𝒮𝐻
𝑄 𝒮𝑄]𝑚𝑛 ∈ 1

𝐿{±1,±𝑗}, 𝑚 ∕= 𝑛, 𝑚 = 1, 2, . . . ,𝐾 ,
𝑛 = 1, 2, . . . ,𝐾;

(iii) if 𝐿 ≡ 1(mod 2) and there exists a quaternary
Hadamard matrix H𝑄 of size 𝐿 + 1, we can obtain a
minimum-TSC signature set which has [𝒮𝐻

𝑄 𝒮𝑄]𝑚𝑛 =

− 1
𝐿 , 𝑚 ∕= 𝑛, 𝑚 = 1, 2, . . . ,𝐾 , 𝑛 = 1, 2, . . . ,𝐾;

(iv) if 𝐿 ≡ 1(mod 2) and there exists a quaternary
Hadamard matrix H𝑄 of size 𝐿 − 1 and 𝐾 ≤ 𝐿 − 1,

3TSC and MSC minimization are equivalent for binary sets for any 𝐾 , 𝐿
with 𝐾 ≤ 𝐿 (subject to the existence of a binary Hadamard matrix of size
4⌊𝐿+2

4
⌋ ) except for 𝐿 ≡ 2(mod 4) or 𝐿 = 𝐾 ≡ 1(mod 4).

we can obtain a minimum-TSC signature set which
has [𝒮𝐻

𝑄 𝒮𝑄]𝑚𝑛 = 1
𝐿 , 𝑚 ∕= 𝑛, 𝑚 = 1, 2, . . . ,𝐾 ,

𝑛 = 1, 2, . . . ,𝐾 . ■
Based on the above proposition, the TAE of an underloaded

minimum-TSC quaternary signature set can be derived and
the findings are presented in the form of a proposition given
below. The proof is given in the Appendix.

Proposition 5: Let 𝒮𝑄 ∈ 1√
𝐿
{±1,±𝑗}𝐿×𝐾 , 𝐾 ≤ 𝐿, be

a quaternary signature matrix that achieves the corresponding
TSC lower bound in Table I. Then,

(i) TAE(𝒮𝑄) = 1, if 𝐿 ≡ 0(mod 2);
(ii) (𝐿+1)𝐾−1(𝐿−𝐾+1)

𝐿𝐾 ≤ TAE(𝒮𝑄) ≤ (𝐿−1)𝐾−1(𝐿+𝐾−1)
𝐿𝐾 , if

𝐿 ≡ 1(mod 2). The lower bound is tight if there exists
a quaternary Hadamard matrix of size 𝐿 + 1 while the
upper bound is tight if 𝐾 ≤ 𝐿 − 1 and there exists a
quaternary Hadamard matrix of size 𝐿− 1. ■

We recall that for real/complex-valued sets TAE maxi-
mization and TSC minimization are equivalent problems for
all 𝐾 , 𝐿 with 𝐾 ≤ 𝐿 [24]. As shown by Proposition 5,
however, this property no longer holds true for quaternary
signature sets. If 𝐿 ≡ 1(mod 2) and 𝐾 < 𝐿, then there exist
minimum-TSC sets that do not have maximum TAE. Indeed,
by Proposition 5, minimum-TSC sets created by the truncation
module A in the design flow-chart of Fig. 2 are not maximum-
TAE, while alternative minimum-TSC designs by the insertion
module B are. We also observe that minimum-TSC quaternary
sets always exhibit larger TAE values than minimum-TSC
binary sets developed in [16] when 𝐿 ≡ 2(mod4) while
they exhibit larger or equal TAE values when 𝐿 ≡ 3(mod 4).
To illustrate the improvement on TAE of minimum-TSC
quaternary sets, in Fig. 5 we plot the TAE4 of minimum-
TSC quaternary and binary sets as a function of 𝐾 for four
different signature length values 𝐿 = 31, 34, 63, and 64. We
observe that minimum-TSC quaternary sets exhibit significant
TAE improvement relative to their binary counterparts when
𝐿 ≡ 2(mod 4) and 𝐿 ≡ 3(mod 4).

V. SUM CAPACITY OF MINIMUM-TSC QUATERNARY

SIGNATURE SETS

The sum capacity 𝐶sum of a multiple-access communication
channel is the maximum sum of user transmission rates at
which reliable decoding at the receiver end is possible [2],
[22], [23]. In a synchronous code-division multiple-access sys-
tem that employs an 𝐿×𝐾 complex-valued signature matrix
𝒮 = [s1, s2, . . . , s𝐾 ], s𝑘 ∈ ℂ𝐿, ∥s𝑘∥ = 1, 𝑘 = 1, 2, . . . ,𝐾 , for
transmissions over a common additive white Gaussian noise
(AWGN) channel, the received data vector is of the form
r =

∑𝐾
𝑘=1 𝑑𝑘s𝑘 + n where 𝑑𝑘 ∈ ℂ, 𝑘 = 1, 2, . . . ,𝐾 , is

the 𝑘th user transmitted symbol (complex in general) and n
is a zero-mean complex Gaussian vector with auto-covariance
matrix 𝑁0I𝐿. If 𝐸{∣𝑑𝑘∣2} = 𝐸, 𝑘 = 1, 2, . . . ,𝐾 , it is known
[2], [22] that

𝐶sum ≜ log2
∣∣I𝐿 + 𝛾𝒮𝒮𝐻

∣∣ = log2 ∣∣I𝐾 + 𝛾𝒮𝐻𝒮∣∣ (12)

4The design of maximum-TAE minimum-TSC quaternary signature sets is
achieved by module B of Fig. 2. In Fig. 5, we only consider the maximum
value of TAE when it is multi-valued.
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Fig. 5. TAE of binary signature sets and quaternary signature sets versus
number of signatures 𝐾 of length (a) 𝐿 = 31, (b) 𝐿 = 34, (c) 𝐿 = 63, and
(d) 𝐿 = 66 .

where 𝛾 ≜ 𝐸
𝑁0

is the received signal-to-noise ratio (SNR)
of each user signal and I𝐿, I𝐾 are the size-𝐿 and size-𝐾
identity matrices. It is also well known that the sum capacity
is bounded as follows [2], [7], [19]

0 ≤ 𝐶sum(𝒮) ≤
{

𝐾log2(1 + 𝛾), 𝐾 ≤ 𝐿
𝐿log2(1 +

𝐾
𝐿 𝛾), 𝐾 ≥ 𝐿.

(13)

While the upper bound in (13) is tight for real/complex-
valued signature sets for any 𝐾 , 𝐿, it has been shown in [16]
that tightness is not always maintained if 𝒮 is binary. In this
section, we consider minimum-TSC quaternary signature sets
𝒮𝑄 and obtain closed-form expressions for 𝐶sum for any 𝐾 , 𝐿.
Our developments are presented in the form of a proposition
given below. The proof is given in the Appendix.

Proposition 6: Let 𝒮𝑄 ∈ 1√
𝐿
{±1,±𝑗}𝐿×𝐾 be a quater-

nary signature matrix that achieves the corresponding TSC
lower bound in Table I or Table II. Then,
A) if 𝐾 ≤ 𝐿 (underloaded system)
(i) 𝐶sum(𝒮𝑄) = 𝐾log2(1 + 𝛾), if 𝐿 ≡ 0(mod 2);
(ii) (𝐾 − 1)log2(1 +

𝐿+1
𝐿 𝛾) + log2(1 +

𝐿−𝐾+1
𝐿 𝛾) ≤

𝐶sum(𝒮𝑄) ≤ (𝐾 − 1)log2(1 +
𝐿−1
𝐿 𝛾) + log2(1 +

𝐿+𝐾−1
𝐿 𝛾), if 𝐿 ≡ 1(mod 2). The lower bound is tight if

there exists a quaternary Hadamard matrix of size 𝐿+1,
while the upper bound is tight if 𝐾 ≤ 𝐿 − 1 and there
exists a quaternary Hadamard matrix of size 𝐿− 1.

B) If 𝐾 ≥ 𝐿 (overloaded system)
(i) 𝐶sum(𝒮𝑄) = 𝐿log2(1 +

𝐾
𝐿 𝛾), if 𝐾 ≡ 0(mod 2);

(ii) (𝐿 − 1)log2(1 +
𝐾+1
𝐿 𝛾) + log2(1 +

𝐾−𝐿+1
𝐿 𝛾) ≤

𝐶sum(𝒮𝑄) ≤ (𝐿 − 1)log2(1 +
𝐾−1
𝐿 𝛾) + log2(1 +

𝐾+𝐿−1
𝐿 𝛾), if 𝐾 ≡ 1(mod2). The lower bound in (ii)

is tight if there exists a quaternary Hadamard matrix of
size 𝐾 + 1 while the upper bound is tight if 𝐿 ≤ 𝐾 − 1
and there exists a quaternary Hadamard matrix of size
𝐾 − 1. ■

Comparing Proposition 6 with expression (13) for
real/complex-valued sets, we see that minimum-TSC quater-
nary signature sets meet the upper bound in (13) only if
𝐿 ≡ 0(mod2) for underloaded systems or 𝐾 ≡ 0(mod2)
for overloaded systems. In addition, by Proposition 6, when

𝐿 ≡ 1(mod2) for underloaded systems or 𝐾 ≡ 1(mod2)
for overloaded systems and 𝐾 ∕= 𝐿, there exist quaternary
minimum-TSC sets that do not exhibit maximum sum ca-
pacity. Thus, minimum-TSC and maximum-𝐶sum criteria are
not equivalent, in general, for quaternary sets for all 𝐾 , 𝐿.
In particular, by Proposition 6, design module B of Fig. 2
produces 𝐶sum-optimal minimum-TSC designs, while module
A produces minimum-TSC designs that are not 𝐶sum-optimal.

Furthermore, comparing Proposition 6 with Proposition 2 in
[16] for binary sets, we notice that minimum-TSC quaternary
signature sets have higher sum-capacity than minimum-TSC
binary signature sets when 𝐿 ≡ 2(mod4) for underloaded
systems and 𝐾 ≡ 2(mod 4) for overloaded systems. More im-
portantly, similar to the TAE metric, 𝐶sum-optimal minimum-
TSC quaternary signature sets can be produced by module B
of Fig. 2, while the design of minimum-TSC binary sets that
maximize 𝐶sum is an open problem.

To visualize the theoretical developments of Proposition 6
on the sum capacity of quaternary signature sets, we consider
the relative sum-capacity-loss expression

Δ(𝒮) ≜ 1− 𝐶sum(𝒮)
𝐶∗

sum

(14)

where 𝐶∗
sum is the sum capacity of a real/complex-valued

Welch-bound-equality (WBE) signature set of the same size as
𝒮. In Fig. 6, we plot the sum-capacity-lossΔ(𝒮) of minimum-
TSC quaternary sets as a function of 𝐾 for a common received
SNR per user 𝛾 = 12 dB and four different signature length
values 𝐿 = 31, 32, 33, and 34. Whenever 𝐶sum of minimum-
TSC quaternary sets is multi-valued, we use the maximum
𝐶sum value (module-B produced set). For fair comparison,
maximum 𝐶sum values are also used for the minimum-TSC
binary sets when their corresponding 𝐶sum is multi-valued5

[16]. We observe that minimum-TSC quaternary sets exhibit
rather negligible sum-capacity-loss for almost all 𝐾 , 𝐿 in
comparison with WBE real/complex-valued sets. In addition,
the sum-capacity-loss of quaternary minimum-TSC sets is
quite less than the sum-capacity loss of binary minimum-TSC
sets when 𝐾 is near 𝐿. In Fig. 7, we repeat the same study
as in Fig. 6 for 𝐿 = 63, 64, 65, and 66. Similar conclusions
can be drawn. It can be argued that sum-capacity-wise it is
not worth raising the code-division alphabet size above four
for any 𝐾 , 𝐿, since the sum-capacity-loss of minimum-TSC
quaternary sets already approaches zero rather closely.

VI. CONCLUSIONS

In an effort to gain better understanding of the theoretical
intricacies of finite-alphabet code-division multiplexing, we
examined the following four signature performance metrics:
Total squared correlation (TSC), maximum squared correlation
(MSC), total asymptotic efficiency (TAE), and sum capacity
(𝐶sum). In this paper, we derived new bounds on the TSC of
quaternary signature sets for both underloaded and overloaded

5The sum-capacity-loss study in [16] used instead the smallest 𝐶sum value
when multiple values exist among min-TSC binary sets of a given (𝐾 , 𝐿)
size.

Authorized licensed use limited to: ROME AFB. Downloaded on March 18,2010 at 15:14:38 EDT from IEEE Xplore.  Restrictions apply. 



LI et al.: MINIMUM TOTAL-SQUARED-CORRELATION QUATERNARY SIGNATURE SETS: NEW BOUNDS AND OPTIMAL DESIGNS 3669

0 50 100 150
0

0.5

1

1.5

2

Number of signatures K

Δ
(S

)(
%

)

(a) L=31

0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of signatures K

Δ
(S

)(
%

)

(b) L=32

0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of signatures K

Δ
(S

)(
%

)

(c) L=33

0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of signatures K

Δ
(S

)(
%

)

(d) L=34

Binary sets
Quaternary sets

Binary sets
Quaternary sets

Binary sets
Quaternary sets

Binary sets
Quaternary sets

Fig. 6. Sum-capacity loss Δ(𝒮)(%) of minimum-TSC binary and quaternary
signature sets versus number of signatures 𝐾 of length (a) 𝐿 = 31, (b)
𝐿 = 32, (c) 𝐿 = 33, and (d) 𝐿 = 34 (𝛾 = 12 dB).
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Fig. 7. Sum-capacity loss Δ(𝒮)(%) of minimum-TSC binary and quaternary
signature sets versus number of signatures 𝐾 of length (a) 𝐿 = 63, (b)
𝐿 = 64, (c) 𝐿 = 65, and (d) 𝐿 = 66 (𝛾 = 12 dB).

code-division multiplexing systems (summarized in Tables I
and II, respectively). We showed that the new bounds on the
TSC of quaternary signature sets are lower than the corre-
sponding binary signature set bounds (same number of signals
𝐾 and signature length 𝐿) for all max{𝐾,𝐿} ≡ 2(mod4)
or 𝐾 = 𝐿 ≡ 1(mod4) ∕= 2𝑥(𝑥 + 1) + 1 cases. We then
designed minimum-TSC optimal quaternary sets that meet
the new bounds for all 𝐾,𝐿. Our design procedure depends
on the existence of a quaternary Hadamard matrix of size
2⌈max{𝐾,𝐿}/2⌉ or 2⌊max{𝐾,𝐿}/2⌋.

Utilizing our developments on the TSC of quaternary
signature sets, we derived closed-form expressions for the
MSC, TAE, and sum capacity that minimum-TSC quaternary
signature sets achieve for all 𝐾 , 𝐿 with 𝐾 ≤ 𝐿 and the
sum capacity that minimum-TSC quaternary sets achieve
for all 𝐾 , 𝐿 with 𝐾 > 𝐿. We recall that minimum-
TSC, minimum-MSC, maximum-TAE, and maximum-sum-
capacity are equivalent optimization criteria for real/complex-
valued signature sets, i.e. real/complex-valued minimum-TSC
signature sets are minimum-MSC and maximum-TAE when

the number of signatures 𝐾 is less than or equal to the
signature length 𝐿 and have maximum sum-capacity for any
𝐾 , 𝐿. Interestingly, for quaternary (and binary [16]) signature
sets, there exist 𝐾 , 𝐿 values for which different metrics are
optimized by different sets. Our studies showed that the sum-
capacity loss of the minimum-TSC quaternary signature sets
is negligible in comparison with minimum-TSC real/complex-
alphabet (Welch-bound-equality) sets and quite smaller than
that exhibited by minimum-TSC binary signature sets.

APPENDIX

PROOF OF PROPOSITION 4
The proof of parts (i) and (ii) can be obtained directly from

the proof of Theorem 1 and is omitted herein. With respect to
part (iii), we recall that if the rows and columns of a quaternary
Hadamard matrix are permuted or any row or column is
multiplied by −1 or ±𝑗, the Hadamard orthogonality property
is retained. Hence, we can always arrange one row or one
column of a quaternary Hadamard matrix to have only +1
entries. If there exists a quaternary Hadamard matrix H𝑄 of
size 𝐿+ 1 and 𝐿 ≡ 1(mod 2), a minimum-TSC signature set
can be obtained by taking 𝐾 columns from H𝑄 and removing
one row which contains only +1 entries. After normalization,
the cross-correlation matrix of the created minimum-TSC
signature set is

𝒮𝐻
𝑄 𝒮𝑄 =

𝐿+ 1

𝐿
I𝐾 − 1

𝐿
1𝐾1𝑇

𝐾 (15)

where 1𝐾 is the 𝐾-dimensional all-one column vector. With
respect to part (iv), if there exists a quaternary Hadamard
matrix H𝑄 of size 𝐿 − 1 and 𝐾 ≤ 𝐿 − 1, a minimum-
TSC signature set can be obtained by appending an all-one
row 1𝑇

𝐿−1 to H𝑄 and taking 𝐾 columns. After normalization,
the cross-correlation matrix of the created minimum-TSC
signature set is

𝒮𝐻
𝑄 𝒮𝑄 =

𝐿− 1
𝐿

I𝐾 +
1

𝐿
1𝐾1𝑇

𝐾 . (16)

■

PROOF OF PROPOSITION 5
(i) When 𝐿 ≡ 0(mod 2) and 𝒮𝑄 achieves the TSC lower

bound in Table I, by Proposition 4, part (i), we obtain
TAE(𝒮𝑄) =

∣∣𝒮𝐻
𝑄 𝒮𝑄

∣∣ = ∣I∣ = 1.
(ii) By Proposition 4, [𝒮𝐻

𝑄 𝒮𝑄]𝑚𝑚 = 1 and
∣∣[𝒮𝐻

𝑄 𝒮𝑄]𝑚𝑛

∣∣ =
1
𝐿 , 𝑚 ∕= 𝑛, 𝑚 = 1, 2, . . . ,𝐾 , 𝑛 = 1, 2, . . . ,𝐾 . Then, by
Lemma 2 of [16], we obtain that

(1 +
1

𝐿
)𝐾−1(1− (𝐾 − 1) 1

𝐿
) ≤ ∣∣𝒮𝐻

𝑄 𝒮𝑄

∣∣
≤ (1− 1

𝐿
)𝐾−1(1 + (𝐾 − 1) 1

𝐿
). (17)

Expression (17) leads to the bounds on TAE as they
appear in Proposition 5. If there exists a quaternary
Hadamard matrix H𝑄 of size 𝐿 + 1, by (15) we can
obtain a minimum-TSC quaternary set which has∣∣𝒮𝐻

𝑄 𝒮𝑄

∣∣ =

∣∣∣∣𝐿+ 1𝐿
I𝐾 − 1

𝐿
1𝐾1𝑇

𝐾

∣∣∣∣
=

(
𝐿+ 1

𝐿

)𝐾 (
𝐿−𝐾 + 1

𝐿+ 1

)
(18)
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and this reaches the lower bound in Proposition 5. If there
exists a quaternary Hadamard matrix H𝑄 of size 𝐿− 1,
by (16) we can obtain a minimum-TSC quaternary set
with TAE

∣∣𝒮𝐻
𝑄 𝒮𝑄

∣∣ = (
𝐿− 1
𝐿

)𝐾 (
𝐿+𝐾 − 1

𝐿− 1
)

(19)

and this is the upper bound value in Proposition 5. ■

PROOF OF PROPOSITION 6
Part A

(i) If 𝐿 ≡ 0(mod 2) and 𝒮𝑄 achieves the TSC lower bound
in Table I, it has orthogonal columns, i.e. 𝒮𝐻

𝑄 𝒮𝑄 = I𝐾 .
Therefore,

𝐶sum(𝒮𝑄) = log2
∣∣I𝐾 + 𝛾𝒮𝐻

𝑄 𝒮𝑄

∣∣
= log2 ∣(1 + 𝛾)I𝐾 ∣
= 𝐾log2(1 + 𝛾). (20)

(ii) By Proposition 4, the minimum-TSC quaternary set 𝒮𝑄

has following properties: 1) [I𝐾 + 𝛾𝒮𝐻
𝑄 𝒮𝑄]𝑚𝑚 = 1+ 𝛾,

𝑚 = 1, 2, . . . ,𝐾; 2)
∣∣[I𝐾 + 𝛾𝒮𝐻

𝑄 𝒮𝑄]𝑚𝑛

∣∣ = 𝛾
𝐿 , 𝑚 ∕=

𝑛, 𝑚 = 1, 2, . . . ,𝐾 , 𝑛 = 1, 2, . . . ,𝐾 . Then, Lemma 2
of [16] implies that the determinant of I𝐾 + 𝛾𝒮𝐻

𝑄 𝒮𝑄 is
bounded as follows:

(1 + 𝛾 + 𝛾
𝐿 )

(𝐾−1)(1 + 𝛾 − (𝐾 − 1) 𝛾𝐿 )
≤ ∣∣I𝐾 + 𝛾𝒮𝐻

𝑄 𝒮𝑄

∣∣
≤ (1 + 𝛾 − 𝛾

𝐿 )
(𝐾−1)(1 + 𝛾 + (𝐾 − 1) 𝛾𝐿 ). (21)

Therefore, 𝐶sum(𝒮𝑄) = log2
∣∣I𝐾 + 𝛾𝒮𝐻

𝑄 𝒮𝑄

∣∣ is bounded
as

(𝐾 − 1)log2(1 + 𝐿+1
𝐿 𝛾) + log2(1 +

𝐿−𝐾+1
𝐿 𝛾)

≤ 𝐶sum(𝒮𝑄)

≤ (𝐾 − 1)log2(1 + 𝐿−1
𝐿 𝛾) + log2(1 +

𝐿+𝐾−1
𝐿 𝛾). (22)

If there exists a quaternary Hadamard matrix H𝑄 of
size 𝐿 + 1, by Proposition 4, part (ii), we can obtain a
minimum-TSC quaternary set that satisfies (16). There-
fore,

𝐶sum(𝒮𝑄) = log2
∣∣I𝐾 + 𝛾𝒮𝐻

𝑄 𝒮𝑄

∣∣
= log2

∣∣∣∣
(
1 +

𝐿+ 1

𝐿

)
I𝐾 − 𝛾

𝐿
1𝐾1𝑇

𝐾

∣∣∣∣
= (𝐾 − 1)log2

(
1 +

𝐿+ 1

𝐿
𝛾

)

+log2

(
1 +

𝐿−𝐾 + 1

𝐿
𝛾

)
(23)

which is equal to the lower bound in Proposition 6, Part
A(ii).
If there exists a quaternary Hadamard matrix H𝑄 of size
𝐿 − 1 and 𝐾 ≤ 𝐿 − 1, we can obtain a minimum-TSC
quaternary set that satisfies (16) and by similar to (23)

derivation we can evaluate 𝐶sum as follows:

𝐶sum(𝒮𝑄) = log2
∣∣I𝐾 + 𝛾𝒮𝐻

𝑄 𝒮𝑄

∣∣
= (𝐾 − 1)log2

(
1 +

𝐿− 1
𝐿

𝛾

)

+log2

(
1 +

𝐿+𝐾 − 1
𝐿

𝛾

)
(24)

which is the upper bound in Proposition 6, Part A(ii).

Part B
Set D ≜

√
𝐿
𝐾𝒮𝐻

𝑄 Then

𝐶sum(𝒮𝑄) = log2
∣∣I𝐿 + 𝛾𝒮𝑄𝒮𝐻

𝑄

∣∣
= log2

∣∣∣∣I𝐿 + 𝛾
𝐾

𝐿
D𝐻D

∣∣∣∣
= log2

∣∣∣∣I𝐾 + 𝛾
𝐾

𝐿
DD𝐻

∣∣∣∣ . (25)

D ∈ 1√
𝐾
{±1,±𝑗}𝐾×𝐿 can be viewed as a signature matrix

with 𝐿 unit-norm quaternary signatures of length 𝐾 ≥ 𝐿.
Therefore, 𝐶sum(𝒮𝑄) at SNR 𝛾 equals 𝐶sum(D) at SNR
𝛾𝐾

𝐿 where 𝒮𝑄 is the overloaded and D is the corresponding
underloaded set. We can show that if TSC(𝒮𝑄) achieves the
TSC lower bound for overloaded sets in Table II, then TSC(D)
achieves the TSC lower bound for underloaded sets in Table
I. Hence, we can apply our results in Part A of Proposition
6 to D and obtain the 𝐶sum(𝒮𝑄) expressions in all cases of
Proposition 6, Part B, directly. ■
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